Sustainability in Agriculture: Using Plants to Capture Carbon

  • There’s no silver bullet for sustainability in agriculture.
  • We must focus on solutions that are effective and easy-to-adopt within the current system.
  • Farmers are driven by ROI.
  • Land-use change is a major contributor to agricultural emissions.
  • Plants remove carbon from the atmosphere.
  • More science needs to be done to understand carbon capture.
  • We need a ledger to track emissions and a marketplace to buy and sell credits.
  • There is a lot of innovation in this space.

There’s no silver bullet for sustainability in agriculture

In the world of energy, it’s generally agreed that ultimately, we need to stop pumping hydrocarbons out of the ground. Folks will disagree on the timeline — whether it’s going to be decades or tomorrow — but the idea of creating cheap (essentially free), portable, zero-emissions energy, is a clear end goal. Technologies like nuclear, solar, and wind, combined with advanced batteries, are a framework for achieving zero-carbon energy.

We must focus on solutions that are effective and easy-to-adopt within the current system

Farmers are driven by ROI

Farmers are the ultimate entrepreneurs, betting every growing season that through a combination of grit and technology, they can bend Mother Nature to their will and grow food to maintain their business.

Graph from research at Purdue.

Land-use change is a quarter of agricultural emissions.

The most striking fact (to me) in my research is that about a quarter of agricultural emissions is from converting natural biomes into farmland. Plants suck carbon out of the atmosphere and store it in themselves (like trees in a forest) and in the ground. Disrupting these processes means less carbon is sequestered naturally.

This entire post from Our World in Data is fantastic.

Plants remove carbon from the atmosphere.

Humans require oxygen to create and return carbon dioxide. Plants are the opposite, and pull carbon dioxide from the atmosphere and return oxygen. We can use this fact to encourage farming practices that maximize the amount of carbon captured in the soil. For example, if we can encourage cover crops and tilling practices that leave soil undisturbed, there’s the potential to store a huge amount of carbon within existing farmland.

Graphic from Mother Jones.

More science needs to be done to understand carbon capture.

Like any cutting-edge science we need a lot more data.

We need a ledger to track emissions and a marketplace to buy and sell credits.

A carbon credit market works by one party selling carbon credits and the buyer using those offsets against their own carbon output. In order to do that well, it’s critical to track how much carbon is sequestered by a farm, which needs to happen over time. That’s exactly why the science becomes so important.

There is a lot of innovation in this space.

Trace Genomics is trying to better understand soil. Indigo Ag is focused on a grain marketplace with their carbon offering being a centerpiece. Nori has a carbon removal marketplace. Truterra is Land O’Lakes’ ambitious carbon project. And many, many more.

Conclusion

My conclusion is that carbon capture is a fascinating area with lots of promise, but more research needs to be done before we all jump on the bandwagon; plus we’ll need agreement from key actors in the supply chain before it will be widely adopted.

A reading list

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Mark Johnson

Mark Johnson

2.5K Followers

CTO of Stand Together. Former CEO of GrainBridge, Co-founder of Descartes Labs, CEO of Zite. Love product, philosophy, data refineries, and models.